Skip to content

Easy-to-run ML workflows on any cloud

Welcome to dstack's documentation! Here you can learn what it is, how it works, and how to get started.

What is dstack?

dstack is an open-source tool that enables defining ML workflows as code, running them easily on any cloud while saving artifacts for reuse. It offers freedom to use any ML frameworks, cloud vendors, or third-party tools without requiring code changes.

Get started Join our Slack

How does it work?

Define workflows

Define ML workflows, their output artifacts, hardware requirements, and dependencies via YAML.

workflows:
  - name: mnist-data
    provider: bash
    commands:
      - pip install torchvision
      - python tutorials/mnist/mnist_data.py
    artifacts:
      - path: ./data

  - name: train-mnist
    provider: bash
    deps:
      - workflow: mnist-data
    commands:
      - pip install torchvision pytorch-lightning tensorboard
      - python tutorials/mnist/train_mnist.py
    artifacts:
      - path: ./lightning_logs

YAML eliminates the need to modify code in your scripts, giving you the freedom to choose frameworks, experiment trackers, and cloud providers.

Run workflows

Once a workflow is defined, you can use the dstack run command to run it either locally or remotely.

Run locally

By default, workflows run locally on your machine:

$ dstack run mnist-data

RUN        WORKFLOW    SUBMITTED  STATUS     TAG  BACKENDS
penguin-1  mnist-data  now        Submitted       local

Provisioning... It may take up to a minute. ✓

To interrupt, press Ctrl+C.

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
---> 100%

$ 

The artifacts from local workflows are also stored and can be reused in other local workflows.

Run remotely

To run a workflow remotely (e.g. in a configured cloud account), add the --remote flag to the dstack run command:

$ dstack run mnist-data --remote

RUN        WORKFLOW    SUBMITTED  STATUS     TAG  BACKENDS
mangust-1  mnist-data  now        Submitted       aws

Provisioning... It may take up to a minute. ✓

To interrupt, press Ctrl+C.

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
---> 100%

$ 

The output artifacts from remote workflows are also stored remotely and can be reused by other remote workflows.

The necessary hardware resources can be configured either via YAML or through arguments in the dstack run command, such as --gpu and --gpu-name.

$ dstack run train-mnist --remote --gpu 1

RUN       WORKFLOW     SUBMITTED  STATUS     TAG  BACKENDS
turtle-1  train-mnist  now        Submitted       aws

Provisioning... It may take up to a minute. ✓

To interrupt, press Ctrl+C.

GPU available: True, used: True

Epoch 1: [00:03<00:00, 280.17it/s, loss=1.35, v_num=0]
---> 100%

$ 

Upon running a workflow remotely, dstack automatically creates resources in the configured cloud account and destroys them once the workflow is complete.

NOTE:

For questions or feedback, reach us through our community Slack channel or GitHub.